References
Abramson, Josh, Jonas Adler, Jack Dunger, Richard Evans, Tim Green,
Alexander Pritzel, Olaf Ronneberger, et al. 2024. “Accurate
Structure Prediction of Biomolecular Interactions with AlphaFold
3.” Nature 630 (8016): 493–500. https://doi.org/10.1038/s41586-024-07487-w.
“AlphaFold3 Why Did Nature Publish It Without Its
Code?” 2024. Nature 629 (8013): 728–28. https://doi.org/10.1038/d41586-024-01463-0.
AlQuraishi, Mohammed. 2019. “ProteinNet: A Standardized Data Set
for Machine Learning of Protein Structure.” BMC
Bioinformatics 20 (1). https://doi.org/10.1186/s12859-019-2932-0.
Benegas, Gonzalo, Carlos Albors, Alan J. Aw, Chengzhong Ye, and Yun S.
Song. 2023. “GPN-MSA: An Alignment-Based DNA Language Model for
Genome-Wide Variant Effect Prediction.” http://dx.doi.org/10.1101/2023.10.10.561776.
Benegas, Gonzalo, Sanjit Singh Batra, and Yun S. Song. 2023. “DNA
Language Models Are Powerful Predictors of Genome-Wide Variant
Effects.” Proceedings of the National Academy of
Sciences 120 (44). https://doi.org/10.1073/pnas.2311219120.
Benegas, Gonzalo, Chengzhong Ye, Carlos Albors, Jianan Canal Li, and Yun
S. Song. 2025. “Genomic Language Models: Opportunities and
Challenges.” Trends in Genetics, January. https://doi.org/10.1016/j.tig.2024.11.013.
Biderman, Dan, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul,
Philip Greengard, Connor Jennings, Daniel King, et al. 2024. “LoRA
Learns Less and Forgets Less.” https://doi.org/10.48550/ARXIV.2405.09673.
Cheng, Xingyi, Bo Chen, Pan Li, Jing Gong, Jie Tang, and Le Song. 2024.
“Training Compute-Optimal Protein Language Models.” http://dx.doi.org/10.1101/2024.06.06.597716.
Consens, Micaela Elisa, Ben Li, Anna R. Poetsch, and Stephen Gilbert.
2025. “Genomic Language Models Could Transform Medicine but Not
Yet.” Npj Digital Medicine 8 (1). https://doi.org/10.1038/s41746-025-01603-4.
Dalla-Torre, Hugo, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez
Carranza, Adam Henryk Grzywaczewski, Francesco Oteri, Christian Dallago,
et al. 2024. “Nucleotide Transformer: Building and Evaluating
Robust Foundation Models for Human Genomics.” Nature
Methods 22 (2): 287–97. https://doi.org/10.1038/s41592-024-02523-z.
Duarte, Jose M, Rajagopal Sathyapriya, Henning Stehr, Ioannis Filippis,
and Michael Lappe. 2010. “Optimal Contact Definition for
Reconstruction of Contact Maps.” BMC Bioinformatics 11
(1). https://doi.org/10.1186/1471-2105-11-283.
Elnaggar, Ahmed, Michael Heinzinger, Christian Dallago, Ghalia Rehawi,
Yu Wang, Llion Jones, Tom Gibbs, et al. 2022. “ProtTrans: Toward
Understanding the Language of Life Through Self-Supervised
Learning.” IEEE Transactions on Pattern Analysis and Machine
Intelligence 44 (10): 7112–27. https://doi.org/10.1109/tpami.2021.3095381.
ESM Team. 2024. “ESM Cambrian: Revealing the Mysteries of Proteins
with Unsupervised Learning.” EvolutionaryScale Website. https://evolutionaryscale.ai/blog/esm-cambrian.
Gao, Zhangyang, Cheng Tan, and Stan Z. Li. 2024. “FoldToken4:
Consistent & Hierarchical Fold Language.” http://dx.doi.org/10.1101/2024.08.04.606514.
Gaujac, Benoit, Jérémie Donà, Liviu Copoiu, Timothy Atkinson, Thomas
Pierrot, and Thomas D. Barrett. 2024. “Learning the Language of
Protein Structure.” https://doi.org/10.48550/ARXIV.2405.15840.
Geiping, Jonas, and Tom Goldstein. 2022. “Cramming: Training a
Language Model on a Single GPU in One Day.” https://doi.org/10.48550/ARXIV.2212.14034.
Griewank, Andreas. 2012. “Who Invented the Reverse Mode of
Differentiation?” In, 389–400. EMS Press. https://doi.org/10.4171/dms/6/38.
Hassan, Hassan, Kyle Puhger, Ali Saadat, Johannes Mayer, and Maximilian
Sprang. 2025. “Life as a Function: Why Transformer Architectures
Struggle to Gain Genome-Level Foundational Capabilities.” http://dx.doi.org/10.1101/2025.01.13.632745.
Hayes, Thomas, Roshan Rao, Halil Akin, Nicholas J. Sofroniew, Deniz
Oktay, Zeming Lin, Robert Verkuil, et al. 2025. “Simulating 500
Million Years of Evolution with a Language Model.”
Science 387 (6736): 850–58. https://doi.org/10.1126/science.ads0018.
Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. “LoRA: Low-Rank
Adaptation of Large Language Models.” https://doi.org/10.48550/ARXIV.2106.09685.
“Initial Sequencing and Comparative Analysis of the Mouse
Genome.” 2002. Nature 420 (6915): 520–62. https://doi.org/10.1038/nature01262.
Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, et al. 2021.
“Highly Accurate Protein Structure Prediction with
AlphaFold.” Nature 596 (7873): 583–89. https://doi.org/10.1038/s41586-021-03819-2.
Kempen, Michel van, Stephanie S. Kim, Charlotte Tumescheit, Milot
Mirdita, Jeongjae Lee, Cameron L. M. Gilchrist, Johannes Söding, and
Martin Steinegger. 2023. “Fast and Accurate Protein Structure
Search with Foldseek.” Nature Biotechnology 42 (2):
243–46. https://doi.org/10.1038/s41587-023-01773-0.
King, Jonathan Edward, and David Ryan Koes. 2021. “SidechainNet:
An All-Atom Protein Structure Dataset for Machine
Learning.” Proteins: Structure, Function, and
Bioinformatics 89 (11): 1489–96. https://doi.org/10.1002/prot.26169.
Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for
Stochastic Optimization.” https://doi.org/10.48550/ARXIV.1412.6980.
Lin, Zeming, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting
Lu, Nikita Smetanin, et al. 2023. “Evolutionary-Scale Prediction
of Atomic-Level Protein Structure with a Language Model.”
Science 379 (6637): 1123–30. https://doi.org/10.1126/science.ade2574.
Ljungdahl, Alicia, Sayeh Kohani, Nicholas F. Page, Eloise S. Wells,
Emilie M. Wigdor, Shan Dong, and Stephan J. Sanders. 2023.
“AlphaMissense Is Better Correlated with Functional Assays of
Missense Impact Than Earlier Prediction Algorithms.” http://dx.doi.org/10.1101/2023.10.24.562294.
Lupo, Umberto, Damiano Sgarbossa, and Anne-Florence Bitbol. 2022.
“Protein Language Models Trained on Multiple Sequence Alignments
Learn Phylogenetic Relationships.” Nature Communications
13 (1). https://doi.org/10.1038/s41467-022-34032-y.
Marin, Frederikke Isa, Felix Teufel, Marc Horlacher, Dennis Madsen,
Dennis Pultz, Ole Winther, and Wouter Boomsma. 2023. “BEND:
Benchmarking DNA Language Models on Biologically Meaningful
Tasks.” https://doi.org/10.48550/ARXIV.2311.12570.
Meier, Joshua, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and
Alexander Rives. 2021. “Language Models Enable Zero-Shot
Prediction of the Effects of Mutations on Protein Function.” http://dx.doi.org/10.1101/2021.07.09.450648.
Nguyen, Eric, Michael Poli, Matthew G. Durrant, Brian Kang, Dhruva
Katrekar, David B. Li, Liam J. Bartie, et al. 2024. “Sequence
Modeling and Design from Molecular to Genome Scale with Evo.”
Science 386 (6723). https://doi.org/10.1126/science.ado9336.
Nguyen, Eric, Michael Poli, Marjan Faizi, Armin Thomas, Callum
Birch-Sykes, Michael Wornow, Aman Patel, et al. 2023a. “HyenaDNA:
Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution.” https://doi.org/10.48550/ARXIV.2306.15794.
———, et al. 2023b. “HyenaDNA: Long-Range Genomic Sequence Modeling
at Single Nucleotide Resolution.” https://doi.org/10.48550/ARXIV.2306.15794.
Patel, Aman, Arpita Singhal, Austin Wang, Anusri Pampari, Maya Kasowski,
and Anshul Kundaje. 2024. “DART-Eval: A Comprehensive DNA Language
Model Evaluation Benchmark on Regulatory DNA.” https://doi.org/10.48550/ARXIV.2412.05430.
Poli, Michael, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao,
Stephen Baccus, Yoshua Bengio, Stefano Ermon, and Christopher Ré. 2023.
“Hyena Hierarchy: Towards Larger Convolutional Language
Models.” https://doi.org/10.48550/ARXIV.2302.10866.
Rao, Roshan, Joshua Meier, Tom Sercu, Sergey Ovchinnikov, and Alexander
Rives. 2020. “Transformer Protein Language Models Are Unsupervised
Structure Learners.” http://dx.doi.org/10.1101/2020.12.15.422761.
Rentzsch, Philipp, Max Schubach, Jay Shendure, and Martin Kircher. 2021.
“CADD-Spliceimproving Genome-Wide Variant Effect
Prediction Using Deep Learning-Derived Splice Scores.” Genome
Medicine 13 (1). https://doi.org/10.1186/s13073-021-00835-9.
Rives, Alexander, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin,
Jason Liu, Demi Guo, et al. 2021. “Biological Structure and
Function Emerge from Scaling Unsupervised Learning to 250 Million
Protein Sequences.” Proceedings of the National Academy of
Sciences 118 (15). https://doi.org/10.1073/pnas.2016239118.
Saharia, Chitwan, William Chan, Saurabh Saxena, Lala Li, Jay Whang,
Emily Denton, Seyed Kamyar Seyed Ghasemipour, et al. 2022.
“Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding.” https://doi.org/10.48550/ARXIV.2205.11487.
Schubach, Max, Thorben Maass, Lusiné Nazaretyan, Sebastian Röner, and
Martin Kircher. 2024. “CADD V1.7: Using Protein Language Models,
Regulatory CNNs and Other Nucleotide-Level Scores to Improve Genome-Wide
Variant Predictions.” Nucleic Acids Research 52 (D1):
D1143–54. https://doi.org/10.1093/nar/gkad989.
Senior, Andrew W., Richard Evans, John Jumper, James Kirkpatrick,
Laurent Sifre, Tim Green, Chongli Qin, et al. 2020. “Improved
Protein Structure Prediction Using Potentials from Deep
Learning.” Nature 577 (7792): 706–10. https://doi.org/10.1038/s41586-019-1923-7.
Soleymani, Farzan, Eric Paquet, Herna Lydia Viktor, and Wojtek
Michalowski. 2024. “Structure-Based Protein and Small Molecule
Generation Using EGNN and Diffusion Models: A Comprehensive
Review.” Computational and Structural Biotechnology
Journal 23 (December): 2779–97. https://doi.org/10.1016/j.csbj.2024.06.021.
Sullivan, Patrick F., Jennifer R. S. Meadows, Steven Gazal, BaDoi N.
Phan, Xue Li, Diane P. Genereux, Michael X. Dong, et al. 2023.
“Leveraging Base-Pair Mammalian Constraint to Understand Genetic
Variation and Human Disease.” Science 380 (6643). https://doi.org/10.1126/science.abn2937.
Tang, Ziqi, Nirali Somia, Yiyang Yu, and Peter K Koo. 2024b.
“Evaluating the Representational Power of Pre-Trained DNA Language
Models for Regulatory Genomics.” http://dx.doi.org/10.1101/2024.02.29.582810.
———. 2024a. “Evaluating the Representational Power of Pre-Trained
DNA Language Models for Regulatory Genomics.” http://dx.doi.org/10.1101/2024.02.29.582810.
Vig, Jesse, Ali Madani, Lav R. Varshney, Caiming Xiong, Richard Socher,
and Nazneen Fatema Rajani. 2020. “BERTology Meets Biology:
Interpreting Attention in Protein Language Models.” https://doi.org/10.48550/ARXIV.2006.15222.
Watson, Joseph L., David Juergens, Nathaniel R. Bennett, Brian L.
Trippe, Jason Yim, Helen E. Eisenach, Woody Ahern, et al. 2023.
“De Novo Design of Protein Structure and Function with
RFdiffusion.” Nature 620 (7976): 1089–1100. https://doi.org/10.1038/s41586-023-06415-8.
Wengert, R. E. 1964. “A Simple Automatic Derivative Evaluation
Program.” Communications of the ACM 7 (8): 463–64. https://doi.org/10.1145/355586.364791.
Zhang, Zhidian, Hannah K. Wayment-Steele, Garyk Brixi, Haobo Wang,
Dorothee Kern, and Sergey Ovchinnikov. 2024. “Protein Language
Models Learn Evolutionary Statistics of Interacting Sequence
Motifs.” Proceedings of the National Academy of Sciences
121 (45). https://doi.org/10.1073/pnas.2406285121.
Zhou, Zhihan, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and
Han Liu. 2023. “DNABERT-2: Efficient Foundation Model and
Benchmark for Multi-Species Genome.” https://doi.org/10.48550/ARXIV.2306.15006.